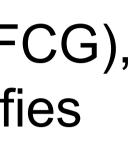

Association Between Prognostic Implications of Platelet FcyRlla (pFCG) and Treatment Strategy for Myocardial Infarction (MI)

David J. Schneider, Sean R. McMahon, Dominick J. Angiolillo, Alexander Fanaroff, Homam Ibrahim, Patrick K. Hohl, Brett L. Wanamaker, Mark B. Effron, Kevin Ball, Timothy Shapiro, Peter M. DiBattiste, on behalf of the Investigators

BACKGROUND

Clustering of a surface receptor, platelet FcyRIIa (pFCG), in signaling domains during platelet activation amplifies activation.

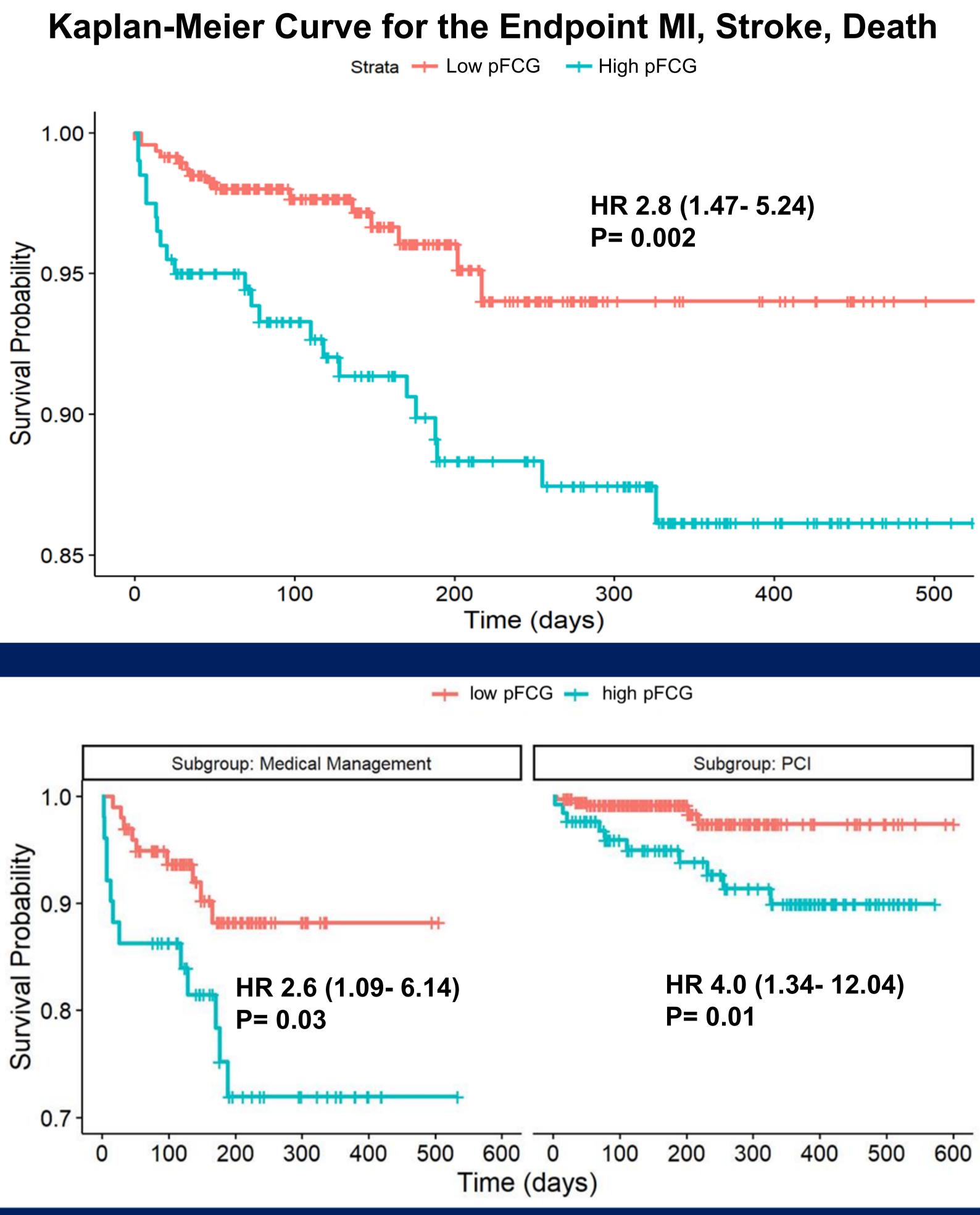


Greater pFCG is associated with greater platelet reactivity. Unlike platelet function tests, quantifying pFCG does not require activation of platelets and thereby reduces test variability. An additional important distinction is that high pFCG reflects increased platelet reactivity to any agonist.

This report describes the prognostic implications of pFCG associated with treatment strategy in a multicenter study of 800 patients with MI.

METHODS

Platelet with type 1 MI were recruited during their index hospitalization. Enrolled patients had 2 of the following characteristics: age \geq 65, multi-vessel coronary artery disease, prior MI, chronic kidney disease, and/or diabetes mellitus. pFCG was quantified on previously fixed platelets in blood that was taken within 2 weeks of enrollment. Patients were contacted every 6 months and patient reported events were confirmed by review of medical records. The primary endpoint was a composite of MI, stroke, and death.



FcyRIIa is crosslinked

FcyRIIa is phosphorylated

pFCG identifies patients at high and low risk of subsequent cardiovascular events

CONTACT INFO: For more information, scan the QR code, go to www.prolocor.com, or email <u>david.schneider@med.uvm.edu</u>

Poster 1307-159

)	Ó	100	200	300	400	500	600
(days	s)					

This pre-planned interim analysis encompasses ~400 patient years. Strategies included percutaneous coronary intervention (PCI, 63%), medical management (22%), and coronary artery bypass surgery (15%). Anti-thrombotic therapy was similar in patients with high and low pFCG.

Characteristic Age (mean ± Gender (% ma MI Type

HTN DM insulin trea **Active Smoker** Hyperlipidemi Prior MI Prior CABG Prior PCI PAD Prior stroke **Renal Insuffic** GF

Medications

Clop Tic Pra Anticoa β-k

ACI Lipid Lo

pFCG identifies patients at high and low risk of subsequent cardiovascular events. This prognostic information should be useful in clinical decisions regarding the intensity and duration of antiplatelet therapy.

David J Schneider is named inventor on a patent (US 10,502,737) that proposes the use of FcyRIIa for assaying platelet reactivity and treatment selection. David J. Schneider and Peter M DiBattiste are co-founders of Prolocor. All other authors have nothing to disclose.

RESULTS

	All Patients	PCI	Medical	
С	(n=764)	(n=494)	(n=150)	р
SD)	69 ± 10	69 ± 10	70 ±10	0.284
nale)	67% (515)	64% (317)	73% (109)	0.042
STEMI	29% (223)	41% (204)	5% (7)	<0.001
ISTEMI	71% (541)	59% (290)	95% (143)	<0.001
	87% (665)	86% (424)	92% (138)	0.053
	57% (435)	55% (273)	70% (105)	0.001
eatment	26% (199)	24% (119)́	37% (56)	0.002
er	22% (168)	23% (114)	19% (28)	0.301
nia	74% (565)	75% (369)	71% (106)	0.328
	28% (214)	28% (137)	37% (56)	0.036
	14% (107́)	14% (68)	23% (34)	0.001
	36% (275)	37% (182)	43% (64)	0.186
	12% (92)	10% (48)	23% (35)	<0.001
	10% (76)	9% (42)	15% (22)	0.035
ciency				
FR <60	31% (237)	29% (144)	49% (69)	<0.001
ESRD	4% (30)	3% (17)	7% (10)	0.027
Aonirin	0.20/(711)	050/(171)	010/ (101)	~0 001
Aspirin	93% (711)	95% (471)	81% (121)	<0.001
oidogrel	56% (425)	54% (267)	60% (90)	0.196
cagrelor	24% (183)	34% (169)	7% (11)	<0.001
asugrel	7% (53)	10% (33)	0% (0)	<0.001
agulant	15% (111)	14% (50)	25% (38)	0.002
-blocker	88% (672)	89% (437)	86% (129)	0.317
CCB	21% (160)	20% (100)	28% (42)	0.038
nitrates	33% (242)	37% (182)	39% (59)	0.658
EI/ARB	55% (91)	64% (317)	49% (73)	0.001
diuretic	39% (22)	28% (137)	49% (73)	<0.001
owering	94% (718)	96% (475)	84% (126)	<0.001

CONCLUSION

DISCLOSURE INFORMATION

